SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1973). B29, 154.

Acta Cryst. (1974). B30, 514

Structure Cristalline de la 17-Désoxyméthasone, C₂₂H₂₉O₄F

PAR L. DUPONT, O. DIDEBERG ET H. CAMPSTEYN

Université de Liège au Sart Tilman, Institut de Physique, 4000-Liège, Belgique

(Reçu le 24 septembre 1973, accepté le 16 octobre 1973)

Abstract. $C_{22}H_{29}O_4F$, orthorhombic $P_{21}2_{12}$, $a = 11\cdot319$ (2), $b = 22\cdot803$ (4), $c = 7\cdot381$ (2) Å, $M = 376\cdot47$, Z = 4, $D_x = 1\cdot312$, $D_m = 1\cdot319$ g cm⁻³, $\mu = 8\cdot09$ cm⁻¹. Torsional angles C(16)–C(17)–C(20)–O(20) and O(20)–C(20)–C(21)–O(21) are $-45\cdot08$ and $4\cdot75^\circ$ respectively. Cohesion of crystal is due to the H bond O(3)…H(11)–O(11) ($d = 2\cdot846$ Å) and to van der Waals interactions.

Introduction. La 17-Désoxyméthasone a une grande activité anti-inflammatoire locale, mais se caractérise par une faible activité minéralocorticoïde. Elle s'inscrit dans le cadre de nos recherches sur la relation structure-activité des corticostéroïdes.

Les cristaux sont obtenus par évaporation lente d'une solution de 17-désoxyméthasone dans l'acétone.

Les intensités de 1960 réflexions non-équivalentes ont été mesurées au moyen d'un diffractomètre à 4 cercles Hilger et Watts; 1747 ont été considérées comme observées $[I > 2\sigma(I)]$. Les dimensions du cristal utilisé pour les mesures étaient: $0.35 \times 0.35 \times 0.25$ mm. La structure a été déterminée par méthode directe à l'aide du programme MULTAN (Germain, Main & Woolfson, 1971). La septième carte des $E_{\rm h}$, (d'après le facteur combiné) révèle vingt et un atomes et donne un $R_{\rm Karle} = 30$ %. Au second cycle, on trouve tous les atomes lourds excepté O(21). L'ensemble des paramètres a été affiné jusque R = 0,074 suivant les procédés décrits par Dupont, Dideberg & Campsteyn (1972). La configuration de la molécule est représentée sur la Fig. 1.

Discussion. Les différents paramètres sont repris dans les Tableaux 1, 2, 3 et 4.* Les paramètres d'Altona, Geise & Romers (1968) du cycle D sont $\varphi_m = 50,95^\circ$, $\Delta = -18,83^\circ$ et $\alpha = 2,031$. Les angles de torsion qui

* La liste des facteurs de structure a été déposée aux archives de la British Library Lending Division (Supplementary Publication No. 30250, 17 pp., 1 microfiche). Des copies peuvent être obtenues en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Tableau 1. Coordonnées et paramètres d'agitation thermique avec leurs déviations standard (a) Atomes pon-hydrogène ($\times 10^4$)

()	mes non nyarog								
	x	У	Z	B ₁₁	B ₂₂	B ₃₃	B ₂₃	B ₁₃	B_{12}
C (1)	-1142 (4)	7113 (2)	805 (7)	71 (4)	16 (1)	188 (11)	6 (5)	13 (11)	-5(3)
C(2)	-2055 (5)	7471 (2)	609 (7)	89 (5)	17 (1)	195 (11)	9 (6)	-46(12)	7 (3)
C(3)	-2917 (4)	7546 (2)	2079 (8)	71 (4)	16 (1)	232 (12)	-1(5)	-51(12)	0 (3)
C(4)	-2716(5)	7210 (2)	3706 (8)	85 (4)	17 (1)	219 (12)	-4(6)	33 (13)	6 (3)
C(5)	-1785 (4)	6856 (2)	3941 (7)	79 (4)	15 (1)	152 (9)	-9(5)	-4(11)	0 (3)
C(6)	-1567 (6)	6523 (2)	5659 (8)	120 (6)	21 (1)	165 (11)	-1(6)	62 (13)	25 (4)
C(7)	-1401(5)	5870 (2)	5290 (7)	96 (5)	19 (1)	168 (10)	36 (5)	57 (12)	10 (4)
C(8)	-478 (4)	5752 (2)	3816 (6)	66 (4)	15 (1)	141 (8)	9 (4)	-11(9)	6 (3)
C(9)	-751 (4)	6101 (2)	2096 (6)	55 (3)	17 (1)	137 (8)	0 (4)	-7(9)	1 (3)
C(10)	- 856 (4)	6781 (2)	2484 (7)	64 (4)	16 (1)	167 (9)	-2(5)	-6(10)	3 (3)
C(11)	43 (4)	5945 (2)	456 (6)	77 (4)	18 (1)	144 (9)	15 (5)	23 (10)	1 (3)
C(12)	120 (4)	5271 (2)	159 (7)	77 (4)	18 (1)	154 (9)	-5(5)	11 (11)	16 (3)
C(13)	482 (4)	4948 (2)	1883 (6)	65 (3)	16 (1)	146 (9)	0 (4)	5 (9)	5 (3)
C(14)	-431 (4)	5094 (2)	3358 (7)	54 (3)	17(1)	145 (8)	2(5)	-4(9)	2(3)
C(15)	-150(5)	4663 (2)	4878 (7)	93 (4)	17 (1)	156 (9)	12 (5)	-18(11)	$\frac{1}{2}(3)$
C(16)	215 (5)	4087 (2)	3880 (8)	89 (4)	18 (1)	201 (11)	11 (5)	-29(12)	14(4)
C(17)	263 (5)	4268 (2)	1832 (7)	91 (4)	16(1)	164 (9)	-6(5)	-49 (11)	5 (3)
C(18)	1745 (4)	5077 (2)	2437 (8)	67 (4)	24 (1)	183 (10)	6 (6)	-5(11)	4 (3)
C(19)	310 (5)	7049 (2)	3241 (8)	72 (4)	19 (1)	233 (11)	12 (6)	-53(12)	-13(3)
C(20)	1160 (6)	3923 (2)	749 (9)	125 (6)	20 (1)	210 (11)	4 (6)	-11(15)	34 (4)
C(21)	758 (7)	3718 (3)	-1101 (9)	148 (7)	30 (1)	196 (12)	-44(7)	18 (16)	17 (6)
C(22)	- 627 (7)	3585 (2)	4190 (9)	164 (8)	18 (1)	229 (13)	13 (6)	24 (18)	-12(5)
O(3)	- 3760 (3)	7881 (2)	1936 (6)	86 (3)	24 (1)	306 (10)	9 (5)	- 50 (11)	24 (3)
O(11)	1181 (3)	6188 (2)	632 (6)	72 (3)	25 (1)	260 (9)	37 (5)	67 (9)	-6(3)
U(20)	2152 (5)	3816 (3)	1213 (8)	153 (6)	53 (2)	335 (14)	-87 (8)	-118 (15)	111 (6)
U(21)	1584 (5)	3383 (3)	-2012 (8)	172 (6)	40 (1)	358 (14)	-127 (8)	41 (16)	23 (5)
F(9)	- 1896 (2)	5935 (1)	1532 (4)	59 (2)	19 (1)	182 (5)	3 (3)	- 32 (6)	-4 (2)

Tableau 1 (suite)

(b) Atomes	d'hydrogène	$(\times 10^{4})$
------------	-------------	-------------------

	x	у	Z
H(1)	-54(6)	708 (3)	-30(10)
H(2)	-214(6)	780 (3)	-40(10)
H(4)	-324(6)	720 (3)	478 (10)
H(61)	-81(6)	670 (3)	607 (10)
H(62)	-218(6)	659 (3)	647 (10)
H(71)	-138(6)	559 (3)	629 (9)
H(72)	-234(6)	566 (3)	490 (9)
H(8)	34 (6)	589 (3)	427 (10)
H(11)	-30(6)	617 (3)	-61(10)
H(121)	- 69 (6)	509 (3)	-35(10)
H(122)	72 (6)	522 (3)	-76 (10)
H(14)	-127 (6)	499 (3)	306 (10)
H(151)	- 88 (6)	459 (3)	575 (10)
H(152)	61 (6)	483 (3)	563 (10)
H(16)	101 (6)	400 (3)	425 (10)
H(17)	- 51 (6)	425 (3)	125 (9)
H(181)	207 (6)	483 (3)	341 (10)
H(182)	236 (7)	515 (3)	146 (10)
H(183)	182 (6)	543 (3)	300 (10)
H(191)	77 (7)	718 (3)	217 (9)
H(192)	18 (6)	749 (3)	382 (10)
H(193)	70 (8)	677 (4)	407 (12)
H(211)	40 (10)	403 (5)	- 166 (16)
H(212)	-10 (8)	352 (4)	- 102 (14)
H(221)	-23(8)	325 (4)	371 (13)
H(222)	-141 (8)	374 (4)	389 (13)
H(223)	-70 (8)	344 (4)	536 (12)
H(110)	156 (7)	645 (4)	-26 (12)
H(210)	246 (13)	349 (5)	- 179 (17)

caractérisent la conformation de la chaîne latérale valent: C(16)C(17)-C(20)O(20) = $-45,08^{\circ}$ et O(20)C(20)-C(21)O(21) = 4,75°. Nous relevons (voir Tableau 5) une distance intermoléculaire courte O(3) · · · H(11)-O(11): $d_{O-O} = 2,85$ Å. L'empilement des molécules est représentée sur la Fig. 2.

Fig.1. Configuration de la molécule. Chaque atome (exceptés les H) est représenté par son ellipsoïde de vibration thermique à 50% de probabilité.

Tableau 2. Longueurs des liaisons avec leurs déviations standard (Å)

C(1) - C(2)	1,325 (7)	C(10) - C(19)	1,558 (7)
C(1) - C(10)	1,489 (7)	C(11) - C(12)	1,556 (7)
C(2) - C(3)	1,469 (8)	C(11) - O(11)	1,407 (6)
C(3) - C(4)	1,442 (8)	C(12) - C(13)	1,526 (7)
C(3) - O(3)	1,228 (6)	C(13) - C(14)	1,537 (7)
C(4) - C(5)	1,339 (7)	C(13) - C(17)	1,571 (6)
C(5) - C(6)	1,499 (7)	C(13) - C(18)	1,516 (7)
C(5) - C(10)	1,515 (7)	C(14) - C(15)	1,524 (7)
C(6) - C(7)	1,524 (8)	C(15)-C(16)	1,562 (7)
C(7) - C(8)	1,532 (7)	C(16)–C(17)	1,568 (8)
C(8) - C(9)	1,531 (6)	C(16) - C(22)	1,507 (8)
C(8) - C(14)	1,539 (6)	C(17) - C(20)	1,513 (8)
C(9) - C(10)	1,579 (7)	C(20)-C(21)	1,513 (9)
C(9) - C(11)	1,549 (7)	C(20)–O(20)	1,199 (9)
C(9)-F(9)	1,413 (5)	C(21)–O(21)	1,382 (9)

Tableau 3. Angles entre liaisons (°)

C(2) - C(1) - C(10)	125,05 (46)	C(9) - C(10) - C(19)	112,81 (39)
C(1) - C(2) - C(3)	120,62 (47)	C(9) - C(11) - C(12)	111.70 (38)
C(2) - C(3) - C(4)	116.67 (46)	C(9) - C(11) - O(11)	111.65 (39)
C(2) - C(3) - O(3)	121.71 (48)	C(12) - C(11) - O(11)	110.52 (39)
C(4) - C(3) - O(3)	121.63 (49)	C(11) - C(12) - C(13)	111.96 (39)
C(3) - C(4) - C(5)	123.51 (49)	C(12) - C(13) - C(14)	107.88 (37)
C(4) - C(5) - C(6)	123.06 (47)	C(12) - C(13) - C(17)	114,47 (39)
C(4) - C(5) - C(10)	121,57 (45)	C(12) - C(13) - C(18)	112.63 (40)
C(6) - C(5) - C(10)	115,35 (42)	C(14) - C(13) - C(17)	97,11 (35)
C(5) - C(6) - C(7)	111,42 (45)	C(14) - C(13) - C(18)	113,66 (39)
C(6) - C(7) - C(8)	112,48 (43)	C(17) - C(13) - C(18)	110,20 (39)
C(7) - C(8) - C(9)	111,05 (38)	C(8) - C(14) - C(13)	112,89 (36)
C(7) - C(8) - C(14)	110,55 (38)	C(8) - C(14) - C(15)	118,27 (38)
C(9) - C(8) - C(14)	109,44 (36)	C(13) - C(14) - C(15)	104,03 (37)
C(8) - C(9) - C(10)	112,06 (37)	C(14)-C(15)-C(16)	104,47 (40)
C(8) - C(9) - C(11)	114,26 (37)	C(15) - C(16) - C(17)	104,00 (41)
C(8) - C(9) - F(9)	106,85 (35)	C(15)-C(16)-C(22)	113,57 (46)
C(10)-C(9)-C(11)	114,20 (37)	C(17) - C(16) - C(22)	111,65 (46)
C(10)-C(9)-F(9)	104,40 (34)	C(13) - C(17) - C(16)	104,06 (39)
C(11)-C(9)-F(9)	103,90 (34)	C(13)-C(17)-C(20)	114,88 (43)
C(1) - C(10) - C(5)	112,45 (40)	C(16)-C(17)-C(20)	113,29 (44)
C(1) - C(10) - C(9)	111,41 (39)	C(17)-C(20)-C(21)	115,85 (51)
C(1) - C(10) - C(19)	106,39 (40)	C(17)-C(20)-O(20)	125,67 (58)
C(5) - C(10) - C(9)	107,01 (37)	C(21)-C(20)-O(20)	118,45 (60)
C(5) - C(10) - C(19)	106,77 (39)	C(20)-C(21)-O(21)	113,98 (58)

Fig. 2. Empilement des molécules: projection (100).

Tableau 4. Angles de torsion (°)

Cycle A		Cycle C		
C(1)C(2)	-2,86	C(8)—C(9)	- 50,04	
C(2) - C(3)	-0,46	C(9) - C(11)	48,53	
C(3) - C(4)	1,88	C(11) - C(12)	- 52,59	
C(4) - C(5)	-0,03	C(12)–C(13)	58,17	
C(5) - C(10)	-2,89	C(13)-C(14)	- 61,68	
C(10) - C(1)	4,43	C(14) - C(8)	57,32	
Cycle	В	Cycle L)	
Cycle C(5)C(6)	B - 55,20	Cycle <i>L</i> C(13)–C(14)) 50,26	
Cycle C(5)—C(6) C(6)—C(7)	B - 55,20 51,26	Cycle <i>L</i> C(13)–C(14) C(14)–C(15)	50,26 - 36,64	
Cycle C(5)—C(6) C(6)—C(7) C(7)—C(8)	B - 55,20 51,26 - 52,69	Cycle <i>L</i> C(13)-C(14) C(14)-C(15) C(15)-C(16)	50,26 - 36,64 6,98	
Cycle C(5)—C(6) C(6)—C(7) C(7)—C(8) C(8)—C(9)	B - 55,20 51,26 - 52,69 55,74	Cycle <i>L</i> C(13)-C(14) C(14)-C(15) C(15)-C(16) C(16)-C(17)	50,26 - 36,64 6,98 24,16	
Cycle C(5)C(6) C(6)C(7) C(7)C(8) C(8)C(9) C(9)C(10)	B 55,20 51,26 52,69 55,74 55,74	Cycle <i>L</i> C(13)-C(14) C(14)-C(15) C(15)-C(16) C(16)-C(17) C(17)-C(13)	50,26 - 36,64 6,98 24,16 - 45,10	

Les auteurs remercient MM les Professeurs J. Toussaint et H. Brasseur pour l'intérêt qu'ils sont porté à ce travail ainsi que M. Vermeire pour l'étude préliminaire et la préparation de l'échantillon.

Tableau 5. Contacts intermoléculaires

C(1) - O(3)	3/010*	3,370 (7) Å
C(2) - O(21)	4/001	3,414 (8)
C(3) - O(20)	4/000	3,276 (8)
C(11) - O(3)	3/010	3,480 (6)
C(22) - F(9)	2/110	3,471 (8)
O(3)O(11)	3/110	2,846 (6)
O(3) - O(20)	4/000	3,119 (7)
O(11)-O(21)	2/010	3,222 (7)

* Pour notation cf. Dupont et al. (1972).

Références

ALTONA, C., GEISE, H. J. & ROMERS, C. (1968). Tetrahedron, 24, 13–32.

- DUPONT, L., DIDEBERG, O. & CAMPSTEYN, H. (1972). Acta Cryst. B28, 3023-3032.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.